If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2x2(x2 + -16)(x2 + -4x + 4) = 0 Reorder the terms: 2x2(-16 + x2)(x2 + -4x + 4) = 0 Reorder the terms: 2x2(-16 + x2)(4 + -4x + x2) = 0 Multiply (-16 + x2) * (4 + -4x + x2) 2x2(-16(4 + -4x + x2) + x2(4 + -4x + x2)) = 0 2x2((4 * -16 + -4x * -16 + x2 * -16) + x2(4 + -4x + x2)) = 0 2x2((-64 + 64x + -16x2) + x2(4 + -4x + x2)) = 0 2x2(-64 + 64x + -16x2 + (4 * x2 + -4x * x2 + x2 * x2)) = 0 2x2(-64 + 64x + -16x2 + (4x2 + -4x3 + x4)) = 0 Combine like terms: -16x2 + 4x2 = -12x2 2x2(-64 + 64x + -12x2 + -4x3 + x4) = 0 (-64 * 2x2 + 64x * 2x2 + -12x2 * 2x2 + -4x3 * 2x2 + x4 * 2x2) = 0 (-128x2 + 128x3 + -24x4 + -8x5 + 2x6) = 0 Solving -128x2 + 128x3 + -24x4 + -8x5 + 2x6 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '2x2'. 2x2(-64 + 64x + -12x2 + -4x3 + x4) = 0 Ignore the factor 2.Subproblem 1
Set the factor 'x2' equal to zero and attempt to solve: Simplifying x2 = 0 Solving x2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x2 = 0 Take the square root of each side: x = {0}Subproblem 2
Set the factor '(-64 + 64x + -12x2 + -4x3 + x4)' equal to zero and attempt to solve: Simplifying -64 + 64x + -12x2 + -4x3 + x4 = 0 Solving -64 + 64x + -12x2 + -4x3 + x4 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
x = {0}
| 3x^2-12x-5=0 | | 16a^2-2a-3=0 | | 5x-8-x=7-3 | | 4(3x-3)=2(x+4)+3(x-2) | | 4y^4=17y^2-4 | | 5+x=5x-15 | | -x^2-3x=-2 | | f(-2)=5x-1 | | 1+2x=x+8 | | -x^2-3x+2=x | | 7x+2=47+2x | | 8x-4+x=5 | | 4x+1=3x+8 | | 5(x+2)=9+5x | | 12x-24+8x+6=0 | | 10+5x=2x+43 | | 8w-18-18=244 | | 5+3x+7x=15 | | 6x+1+5x=122 | | 4(3w+4)=4(2w+12) | | 0x+2=2 | | 10+x+6x=94 | | 12x+2=2x-8 | | 61=x+4x+1 | | ln(18x)-ln(6)=2 | | 90=3x+7x+10 | | 4=3x+5 | | x^2+7x+2=100 | | 7x-8=12x-3 | | 6(2x-4)+2(4x+3)=0 | | 66-4x=5x+16 | | 10x=113-38x |